Deteksi Tingkat Kesegaran Daging Ayam Menggunakan K-Nearest Neighbor

Main Article Content

Irfan Purwanto M. Afriansyah Kusrini Kusrini

Abstract

The high demand for meat and the limited availability of meat on the market, make the price of meat become expensive and more and more traders are mixing rotten meat into fresh meat. To avoid risk, the public as consumers must be aware and know the characteristics of rotten meat and the difference with fresh meat. This study developed a fresh meat detection device using the TCS-230 RGB color sensor. The tool works by measuring the composition of RGB colors in identified meat and comparing with the reference composition of fresh meat RGB color. K-Neirest Neighbor as a method for introducing the freshness of chicken meat tested. The input used in the K-Neirest Neighbor is in the form of RGB color values ​​obtained from the color sensor.In this study, meat freshness was tested using TCS-230 color sensor with an accuracy rate of 87% with a positive precision of 92% and negative precision of 67%

Article Details

How to Cite
Purwanto, I., Afriansyah, M., & Kusrini, K. (2019). Deteksi Tingkat Kesegaran Daging Ayam Menggunakan K-Nearest Neighbor. CCIT Journal, 12(2), 177-185. Retrieved from http://ejournal.raharja.ac.id/index.php/ccit/article/view/688
Section
Articles

References

[1] Faris Mushlihul Amin, 2018. Identifikasi Citra Daging Ayam Berformalin Menggunakan Metode Fitur Tekstur Dan K-Nearest Neighbor (K-Nn)
[2] Faizun Iqbal Zulfi, 2017. Identifikasi Tingkat Kesegaran Daging Sapi Lokal Menggunakan Ekstraksi Fitur Warna Berbasis Gui Matlab
[3] Elvia Budianita, 2015. Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi
[4] Enny Itje Sela, 2017. Deteksi Kualitas Telur Menggunakan Analisis Tekstur
[5] Rizka Kaamtsaalil Salsabiilaa, 2016. Deteksi Kualitas Dan Kesegaran Telur Ayam Ras Berdasarkan Deteksi Objek Transparan Dengan Metode Grey Level Co-Occurrence Matrix (Glcm) Dan Klasifikasi K-Nearest Neighbor (Knn).
[6] Miftahus Sholihin, 2018. Klasifikasi Mutu Telur Berdasarkan Fitur Warna Dengan Menggunakan Metode K-Nearest Neighbor
[7] Ratri Enggar Pawening, 2016. Ekstraksi Fitur Berdasarkan Deskriptor Bentuk dan Titik Salien Untuk Klasifikasi Citra Ikan Tuna
[8] Fitri Astutik, 2013. Sistem Pengenalan Kualitas Ikan Gurame dengan Wavelet, PCA, Histogram HSV dan KNN