Deep Learning Pada Detektor Jerawat: Model YOLOv5

Main Article Content

Hendra Kusumah Muhammad Suzaki Zahran Kadek Naufal Rifqi Devi Alawiyah Putri Ety Meina Wakti Hapsari

Abstract

Jerawat (Acne Vulgaris) merupakan masalah utama yang sulit untuk dihindari pada masyarakat daerah perkotaan, seperti Jakarta dan sekitarnya. Penyebab utama dari jerawat yaitu tingginya polusi udara yang disebabkan oleh hasil pembakaran transportasi dan sektor industri. Sisa pembakaran ini umumnya mengandung PM (Particulate Matter) dengan ukuran yang cukup kecil (PM2.5 dan PM10) yang mampu masuk ke dalam kulit melalui pori-pori dan bereaksi dengan beberapa senyawa diudara sehingga menyebabkan banyak permasalahan kulit lainnya. Penelitian ini berfokus pada pendeteksian jerawat dengan menggunakan model Deep Learning, yaitu YOLOv5. YOLOv5 dilatih dengan menggunakan tiga optimizer berbeda (SGD, Adam, dan AdamW) sebanyak 100 epochs. Setelah dilakukan pelatihan, didapatkan hasil F1-score dengan optimizer SGD sebesar 43%, Adam 39%, dan AdamW sebesar 40%. Pada penelitian ini, optimizer SGD memiliki nilai F1 tertinggi sehingga dijadikan sebagai optimizer teroptimum yang dapat digunakan pada permasalahan di penelitian ini.

Article Details

How to Cite
Kusumah, H., Zahran, M., Rifqi, K., Putri, D., & Wakti Hapsari, E. (2023). Deep Learning Pada Detektor Jerawat: Model YOLOv5. Journal Sensi: Strategic of Education in Information System, 9(1), 24-35. https://doi.org/https://doi.org/10.33050/sensi.v9i1.2620
Section
Articles
Author Biographies

Hendra Kusumah, Universitas Raharja

Program Studi Magister Teknik Informatika, Fakultas Sains dan Teknologi.

Muhammad Suzaki Zahran, Universitas Raharja

Program Studi Sistem Komputer, Fakultas Sains dan Teknologi.

Kadek Naufal Rifqi, Universitas Raharja

Program Studi Sistem Informasi, Fakultas Sains dan Teknologi.

Devi Alawiyah Putri, Universitas Raharja

Program Studi Manajemen Informatika, Fakultas Sains dan Teknologi.

Ety Meina Wakti Hapsari, Universitas Raharja

Program Studi Manajemen Informatika, Fakultas Sains dan Teknologi.

References

[1] P. Lestari, M. K. Arrohman, S. Damayanti, and Z. Klimont, “Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta,” Sep. 2022, doi: 10.1016/J.APR.2022.101521. P. Lestari, M. K. Arrohman, S. Damayanti, and Z. Klimont, “Emissions and spatial distribution of no. 9, p. 101521,
P. Lestari, M. K. Arrohman, S. Damayanti, and Z. Klimont, “Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta,” Atmos Pollut Res, vol. 13, no. 9, p. 101521, Sep. 2022, doi: 10.1016/J.APR.2022.101521.
[2] “Informasi Indeks Kualitas Udara (AQI) dan Polusi Udara di Indonesia | IQAir.” https://www.iqair.com/id/indonesia (accessed Sep. 01, 2022).
[3] “Konsentrasi PM2,5 di Jakarta Membahayakan - Kompas.id.” https://www.kompas.id/baca/humaniora/2022/06/18/konsentrasi-pm25-di-jakarta membahayakan (accessed Sep. 01, 2022).
[4] R. D. Pamela, “Jakarta’s Air Pollution, and the New Emerging Cause for Skin Aging,” Journal of Dermatology and Skin Science, vol. 2, no. 1, 2020.
[5] X. Li et al., “The relationship between short-term PM2.5 exposure and outpatient visits for acne vulgaris in Chongqing, China: a time-series study,” Environmental Science and Pollution Research 2022 29:40, vol. 29, no. 40, pp. 61502–61511, Apr. 2022, doi: 10.1007/S11356-02220236-8.
[6] Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 2, p. 192, 2021, doi: 10.24114/cess.v6i2.25840.
[7] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018, [Online]. Available: http://arxiv.org/abs/1804.02767
[8] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.
[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” 2020, [Online]. Available: http://arxiv.org/abs/2004.10934
[10] “Acne (face) images | DermNet.” https://dermnetnz.org/topics/acne-face-images (accessed Sep. 03, 2022).
[11] “Roboflow: Give your software the power to see objects in images and video.” https://roboflow.com/ (accessed Sep. 03, 2022).
[12] Y. Xu et al., “Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 4, pp. 1452–1459, Apr. 2021, doi: 10.1109/TPAMI.2020.2974745.
[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
[14] “Q1 - Developing smart covid19 social distancing surveillance drone using yolo.pdf.”
[15] M. Simon et al., “Complexer-YOLO: Real-time 3D object detection and tracking on semantic point clouds,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2019-June, pp. 1190–1199, 2019, doi: 10.1109/CVPRW.2019.00158.
[16] “Joseph Redmon on Twitter: ‘“We shouldn’t have to think about the societal impact of our work because it’s hard and other people can do it for us” is a really bad argument.’ / Twitter.” https://twitter.com/pjreddie/status/1230523827446091776?ref_src=twsrc%5Etfw%7Ctwcamp%5 Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E33cf8189af3836f97c440610 106fc8fcec348dd4%7Ctwcon%5Es2_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020% 2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F (accessed Sep. 03, 2022).
[17] “YOLOv5 Documentation.” https://docs.ultralytics.com/ (accessed Sep. 03, 2022).
[18] Y. Kusunoki, J. Błaszczyński, M. Inuiguchi, and R. Słowiński, “Empirical risk minimization for dominance-based rough set approaches,” Inf Sci (N Y), vol. 567, pp. 395–417, Aug. 2021, doi: 10.1016/J.INS.2021.02.043.
[19] A. Montanari, B. Saeed, B. Edu, P.-L. Loh, and M. Raginsky, “Universality of empirical risk minimization,” Proceedings of Machine Learning Research, vol. 178. PMLR, pp. 4310–4312, Jun. 28, 2022. Accessed: Sep. 03, 2022. [Online]. Available: https://proceedings.mlr.press/v178/montanari22a.html
[20] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-Averse Gradient Descent for Multi-task learning,” Adv Neural Inf Process Syst, vol. 34, pp. 18878–18890, Dec. 2021, Accessed: Sep. 03, 2022. [Online]. Available: https://github.com/Cranial-XIX/CAGrad.
[21] S. H. Haji and A. M. Abdulazeez, “COMPARISON OF OPTIMIZATION TECHNIQUES BASED ON GRADIENT DESCENT ALGORITHM: A REVIEW,” PalArch’s Journal of Archaeology of Egypt / Egyptology, vol. 18, no. 4, pp. 2715–2743, Feb. 2021, Accessed: Sep. 03, 2022. [Online]. Available: https://www.archives.palarch.nl/index.php/jae/article/view/6705
[22] “What is Gradient Descent? | IBM.” https://www.ibm.com/cloud/learn/gradient-descent (accessed
Sep. 03, 2022).
[23] S. Tang, Y. Zhu, and S. Yuan, “An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump,” Advanced Engineering Informatics, vol. 50, p. 101406, Oct. 2021, doi: 10.1016/J.AEI.2021.101406.
[24] N. Loizou, S. Vaswani, I. Laradji, S. Lacoste-Julien, and M. Diro, “Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence,” vol. 130. PMLR, pp. 1306–1314, Mar. 18, 2021. Accessed: Sep. 03, 2022. [Online]. Available: https://proceedings.mlr.press/v130/loizou21a.html
[25] J. Wang, P. Chen, N. Zheng, B. Chen, J. C. Principe, and F. Y. Wang, “Associations between MSE and SSIM as cost functions in linear decomposition with application to bit allocation for sparse coding,” Neurocomputing, vol. 422, pp. 139–149, Jan. 2021, doi: 10.1016/J.NEUCOM.2020.10.018.
[26] N. Loka, I. Couckuyt, F. Garbuglia, D. Spina, I. van Nieuwenhuyse, and T. Dhaene, “Bi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions,” Engineering with Computers 2022, pp. 1–11, Jan. 2022, doi: 10.1007/S00366-021-01573-7.
[27] X. Luo, “Novel iterative ensemble smoothers derived from a class of generalized cost functions,” Comput Geosci, vol. 25, no. 3, pp. 1159–1189, Jun. 2021, doi: 10.1007/S10596-021-100461/FIGURES/12.
[28] P. Wilmott, “Machine Learning,” Machine Learning and the City, pp. 217–248, May 2022, doi: 10.1002/9781119815075.CH19.
[29] A. Jung, “Machine Learning: Foundations, Methodologies, and Applications,” vol. LXX, no. 1, pp. 105–122, 2022, Accessed: Sep. 03, 2022. [Online]. Available: https://link.springer.com/bookseries/16715
[30] Y. Lei and T. Hu, “Generalization Performance of Multi-pass Stochastic Gradient Descent with Convex Loss Functions,” Journal of Machine Learning Research, vol. 22, pp. 1–41, 2021, Accessed: Sep. 03, 2022. [Online]. Available: http://jmlr.org/papers/v22/19-716.html.
[31] S. L. Smith, B. Dherin, D. G. T. Barrett, and S. De, “On the Origin of Implicit Regularization in Stochastic Gradient Descent,” Jan. 2021, doi: 10.48550/arxiv.2101.12176.
[32] S. Wojtowytsch, “Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis,” Jun. 2021, doi: 10.48550/arxiv.2106.02588.
[33] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
[34] “A 2021 Guide to improving CNNs-Optimizers: Adam vs SGD | by Sieun Park | Geek Culture | Medium.” https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vssgd-495848ac6008 (accessed Sep. 03, 2022).
[35] N. Attrapadung et al., “Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation,” Jun. 2021, doi: 10.48550/arxiv.2106.02203.
[36] Y. Arouri and M. Sayyafzadeh, “An adaptive moment estimation framework for well placement optimization,” Computational Geosciences 2022 26:4, vol. 26, no. 4, pp. 957–973, Feb. 2022, doi: 10.1007/S10596-022-10135-9.
[37] X. Shen, D. Li, R. Fang, Y. Zhou, and X. Wu, “Distributed adaptive online learning for convex optimization with weight decay,” Asian J Control, vol. 24, no. 2, pp. 562–575, Mar. 2022, doi: 10.1002/ASJC.2489.
[38] R. Llugsi, S. el Yacoubi, A. Fontaine, and P. Lupera, “Comparison between Adam, AdaMax and Adam W optimizers to implement a Weather Forecast based on Neural Networks for the Andean city of Quito,” ETCM 2021 - 5th Ecuador Technical Chapters Meeting, Oct. 2021, doi: 10.1109/ETCM53643.2021.9590681.
[39] I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem,” Technologies 2021, Vol. 9, Page 81, vol. 9, no. 4, p. 81, Nov. 2021, doi: 10.3390/TECHNOLOGIES9040081.
[40] Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding of classifiers to maximize F1 measure,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8725 LNAI, no. PART 2, pp. 225–239, 2014, doi: 10.1007/978-3-662-44851-9_15.
[41] D. Fourure, M. U. Javaid, N. Posocco, and S. Tihon, “Anomaly Detection: How to Artificially Increase Your F1-Score with a Biased Evaluation Protocol,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12978 LNAI, pp. 3–18, 2021, doi: 10.1007/978-3-030-86514-6_1/COVER.
[42] J. Miao and W. Zhu, “Precision–recall curve (PRC) classification trees,” Evolutionary Intelligence 2021 15:3, vol. 15, no. 3, pp. 1545–1569, Apr. 2021, doi: 10.1007/S12065-02100565-2.

Most read articles by the same author(s)