Credit Risk Prediction Model Using Support Vector Machine with Parameter Optimization in Banks Model Prediksi Risiko Kredit Menggunakan Support Vector Machine dengan Optimasi Parameter pada Bank
Main Article Content
Abstract
Abstract
This research aims to determine the Support Vector Machine (SVM) model with Parameter Optimization in predicting loan worthiness to avoid the risk of bad credit at the Bank. Every bank tries to market financial loan products with very strict requirements. One of the requirements is that the company's financial reports must be healthy if it borrows money from a bank to develop the company's business. In the credit analysis process, there are 19 financial factors that must be measured from dozens or even hundreds of companies proposing financial loans, making it difficult for credit analysts to make decisions about whether these companies are worthy of borrowing or not. Therefore, this research was carried out by comparing the two models, namely SVM with parameter optimization and SVM with parameter optimization and Particle Swarm Optimization (PSO) to select the best model. The research results show that the Area Under Curve (AUC) criteria with validation number of folds (nof) = 10 and nof = 5 are 98.80% and 98.80%, meaning good and stable in the SVM model with parameter optimization. Meanwhile, the SVM model with parameter optimization and PSO has better AUC for validation nof=5 (99%) but for AUC with validation nof=10 (98.30%) it is less good.
Article Details
References
[2] Y. Ameliana. "Pengaruh M. S. dan M. P. T. P. P. U. M. K. D. M. Yunus, “Pengaruh Modal Sendiri dan Modal Pinjaman Terhadap Peningkatan Pendapatan Usaha Mikro Kecil Dan Menengah,” 2021, [Online]. Available: https://journal.stieamkop.ac.id/index.php/yume/article/view/996
[3] A. Dwi. "Pengaruh struktur aktiva pertumbuhan dan likuiditas terhadap struktur modal perusahaan Lestari, “Pengaruh struktur aktiva, pertumbuhan, dan likuiditas terhadap struktur modal perusahaan,” 2010, [Online]. Available: https://scholar.archive.org/work/3ff5p7srrrhivo4wtkxzozrupe/access/wayback/http://e-journalfb.ukdw.ac.id:80/index.php/jrak/article/download/40/35
[4] Ali. "Analisis faktor yang mempengaruhi struktur modal serta pengaruhnya terhadap harga saham perusahaan real estate yang go public di B. E. I. Kesuma, “Analisis faktor yang mempengaruhi struktur modal serta pengaruhnya terhadap harga saham perusahaan real estate yang go public di Bursa Efek Indonesia,” 2009, [Online]. Available: http://jurnalmanajemen.petra.ac.id/index.php/man/article/view/17743
[5] Vikramaditya. "Tutorial on support vector machine (svm). " S. of E. W. S. U. 37 no Jakkula, “Tutorial on support vector machine (svm),” 2006, [Online]. Available: https://course.khoury.northeastern.edu/cs5100f11/resources/jakkula.pdf
[6] C. Nianguang, P. P. Pedro, N. Shavira, W. Yang, and Xu. "Applications of support vector machine (SVM) learning in cancer genomics Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” 2018, [Online]. Available: https://cgp.iiarjournals.org/content/15/1/41.short
[7] E. Michael and Theodoridis. "A geometric approach to support vector machine (SVM) classification Sergios, “A geometric approach to support vector machine (SVM) classification,” 2006, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1629090/
[8] A. Derek and M. Schnyer. "Support vector machine. " I. M. learning David, “Support vector machine”, [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128157398000067
[9] Thorsten. "Svmlight: S. vector machine. " S.-L. S. V. M. http://svmlight. joachims Joachims, “Svmlight: Support vector machine,” 1999, [Online]. Available: https://www.researchgate.net/profile/Thorsten-Joachims/publication/243763293_SVMLight_Support_Vector_Machine/links/5b0eb5c2a6fdcc80995ac3d5/SVMLight-Support-Vector-Machine.pdf
[10]W. S. "What is a support vector machine? Noble, “What is a support vector machine?,” 2006, [Online]. Available: https://www.nature.com/articles/nbt1206-1565
[11]A. M. Rouslan, “Support vector machines (SVM) as a technique for solvency analysis,” 2008, [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1424949
[12]S. Shan, “Support vector machine,” 2016, [Online]. Available: https://link.springer.com/chapter/10.1007/978-1-4899-7641-3_9
[13]P. S. K., S. N. Arun, V. S. V., and S. N., “A support vector machines approach for efficient facial expression recognition”, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5328312/
[14]L. X., H. Yong, and Q. Wu. "Least square support vector machine analysis for the classification of paddy seeds by harvest year C., “Least square support vector machine analysis for the classification of paddy seeds by harvest year,” 2008, [Online]. Available: https://elibrary.asabe.org/abstract.asp?aid=25294
[15]Supriyanto. "Optimasi A. S. V. M. (Svm) M. A. U. P. R. K. Catur, “Optimasi Algoritma Support Vector Machine (Svm) Menggunakan Adaboost Untuk Penilaian Risiko Kredit,” 2013, [Online]. Available: https://www.academia.edu/download/51212080/Vol_09.1_038-049.pdf