Using Machine Learning Algorithms to Predict the Training Needs of Students for SMK Pustek Tangerang Penggunaan Algoritma Machine Learning untuk Memprediksi Kebutuhan Pelatihan Siswa SMK Pustek Tangerang

Main Article Content

Siti Maesaroh Anita Ratnasari

Abstract

Students at SMK Pustek Serpong in South Tangerang have diverse backgrounds, interests, and potentials that need to be identified and developed through appropriate training programs. This research aims to utilize machine learning algorithms to improve the accuracy of predicting students' training and development needs. Student data, including demographics, academic achievements, interests, and extracurricular activities, will be used to train models such as Random Forest Classifier, SVM, Gradient Boosting Classifier, and K-NN, targeting their chosen academic majors. The problem-solving approach involves problem identification, selection of machine learning methods, dataset collection, and model implementation. The research findings show that Gradient Boosting Classifier performs best with 77% accuracy, 79% precision, 96% recall, and an F1-score of 87% for the majority class. Conversely, K-NN achieves 67.97% accuracy but exhibits lower performance in identifying minority classes with precision and recall around 28% and 23%, respectively.

Article Details

How to Cite
Maesaroh, S., & Ratnasari, A. (2024). Using Machine Learning Algorithms to Predict the Training Needs of Students for SMK Pustek Tangerang. Journal Sensi: Strategic of Education in Information System, 10(2), 181-195. https://doi.org/https://doi.org/10.33050/sensi.v10i2.3476
Section
Articles

References

[1] Tri Hardianingsih L, Istighosah M, Alin AY, Ghonim Asgar MR. Systematic Literature Review of Trend and Characteristic Agile Model. J Tek Inform. 2023;16(1):45–57.
[2] David Patón-Romero J, Baldassarre MT, Rodríguez M, Piattini M. Maturity model based on CMMI for governance and management of Green IT. IET Softw. 2019;13(6):555–63.
[3] Szczepaniuk EK, Szczepaniuk H, Rokicki T, Klepacki B. Information security assessment in public administration. Comput Secur. 2020;90.
[4] Wu W, Huang T, Gong K. Ethical Principles and Governance Technology Development of AI in China. Engineering [Internet]. 2020;6(3):302–9. Available from: https://doi.org/10.1016/j.eng.2019.12.015
[5] Hamzane I. Implementation of a Decision System for a Suitable IT Governance Framework. Int J Comput Sci Inf Secur [Internet]. 2019;(May). Available from: https://www.academia.edu/39534967/Implementation_of_a_decision_system_for_a_suitable_IT_gov ernance_framework
[6] Uysal M, Çetinkaya E. Information Technology Governance Practices, Challenges and Effects on Enterprise Performance. Acta Infologica. 2021;5(1):65–78.
[7] Levstek A, Pucihar A, Hovelja T. Towards an Adaptive Strategic IT Governance Model for SMEs. J Theor Appl Electron Commer Res. 2022;17(1):230–52.
[8] Jansen S. A focus area maturity model for software ecosystem governance. Inf Softw Technol [Internet]. 2020;118(June 2019):106219. Available from: https://doi.org/10.1016/j.infsof.2019.106219
[9] Waghire AA, Joshi R, Rathore APS, Jain R. Development of maturity model for assessing the implementation of Industry 4.0: learning from theory and practice. Prod Plan Control [Internet]. 2021;32(8):603–22. Available from: https://doi.org/10.1080/09537287.2020.1744763
[10] Permatahati I, Winarno WW, Kurniawan MP. Penerapan Capability Maturity Model Integration Untuk Mengukur Tingkat Kematangan Organisasi Dalam Proses Pengembangan Perangkat Lunak (Studi Kasus: Direktorat Innovation Center Universitas Amikom Yogyakarta). Respati. 2020;15(1):43.
[11] Saiful A, Andryana S, Gunaryati A. Prediksi Harga Murah Menggunakan Web Scraping dan Machine Learning Dengan Algoritma Linear Regression. Jurnal Teknik Informatika dan Sistem Informasi. 2021;8(1):41-50.
[12] Retnoningsih E & Pramudita R. Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python. Bina Insani Ict Journal. 2020;7(2)
[13] Setyowati, R., Prabowo, W., & Yusuf, M. (2019). Pengambilan Keputusan Menentukan Jurusan Kuliah Ditinjau Dari Student Self Efficacy Dan Persepsi terhadap Harapan Orang Tua. Jurnal Psikologi Pendidikan Dan Konseling: Jurnal Kajian Psikologi Pendidikan Dan Bimbingan Konseling, 5(1), 42–48.
[14] Undang-Undang Dasar Negara Republik Indonesia Tahun 1945.
[15] Friantini, R. N., & Winata, R. (2019). Analisis Minat Belajar pada Pembelajaran Matematika. JPMI (Jurnal Pendidikan Matematika Indonesia), 4(1), 6–11.