Analysis of House Price Using K-Means and Naïve Bayes Methods Analisis Harga Rumah Dengan Metode K-Means Dan Naïve Bayes

Main Article Content

Arman Prasojo Sugiyarto Nur Hayati Eri Mardiani

Abstract

This study aims to compare the performance of the K-Means and Naïve Bayes algorithms in analyzing house prices. The dataset used is a house price dataset obtained from observational results. The study was conducted for approximately 2 months, focusing on the implementation of the K-Means and Naïve Bayes algorithms. The data was processed and analyzed using Orange software, and the results were presented in tables and graphs. The analysis results showed that the K-Means algorithm outperformed the Naïve Bayes algorithm with an accuracy value of 30% for the variable y distance to public facilities and 22% for the variable y land area and 82% with Naïve Bayes calculation. Therefore, it can be concluded that the K-Means method is a more effective method for analyzing house prices.

Article Details

How to Cite
Sugiyarto, A., Hayati, N., & Mardiani, E. (2024). Analysis of House Price Using K-Means and Naïve Bayes Methods. Journal Sensi: Strategic of Education in Information System, 10(2), 222-231. https://doi.org/https://doi.org/10.33050/sensi.v10i2.3480
Section
Articles

References

[1] Wang, L., Wang, G., Yu, H., & Wang, F., "Prediction and analysis of residential house price using a flexible spatiotemporal model", 25, 503-522, 2022. doi:https://doi.org/10.1080/15140326.2022.2045466© 2022 The Author(s).
[2] Reddy, K., Athelli, T., & Kulsum, S., Journal Of Emerging Technologies And Innovative Research (JETIR), 9, 2022. Retrieved from http://www.jetir.org/
[3] Putri, V. A., Prasetijo, A. B., & Eridani, D.,"Perbandingan Kinerja Algoritme Naive Bayes dan K-Nearest Neighbor (KNN) Untuk Prediksi Harga Rumah", 162-171, 2022. doi:10.14710/transmisi.24.4.162-171
[4] Aji, B. G., Sondawa, D. C., Gifari, M. R., & Wijayanto, S., "Penerapan Algoritma K-Means Untuk Clustering Harga Rumah Di Bandung", 14, 17-23, 2023.
[5] Gude, V. , "A Multi-Level Modeling Approach For Predicting Real-Estate Dynamics", May2023. doi:http://dx.doi.org/10.1108/IJHMA-02-2023-0024
[6] Yunardi, R. T., & Dina, N. Z., "Data Mining dan Machine Learning dengan Orange3 Tutorial dan Aplikasinya", In A. Abadi (Ed.). Surabaya, Jawa Timur: Airlangga University Press., 2022.
[7] Teoh, E. Z., Yau, W. C., Ong, T. S., & Connie, T., "Explainable Housing Price Prediction With Determinant Analysis", 16(5), 1021-1045, July 4, 2022, . doi:10.1108/IJHMA-02-2022-0025
[8] Sulistiyawati, A., & Supriyanto, E., "Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan", 15, 25-36, 2021. Retrieved from https://doi.org/10.33365/jtk.v15i2.1162
[9] Aditya, A., Jovian, I., & Sari, B. N., "Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah", 4, 51-88, Januari, 2020. doi:10.30865/mib.v4i1.1784
[10] Ningrat, Desy Rahmawati., Maruddani, Di Asih I., & Wuryandari, Triastuti, "Analisis Cluster dengan Algoritma K-Means dan Fuzzy C-Means Clustering untuk Pengelompokkan Data Obligasi Korporasi", 5(4), 641-650, 2016.
[11] Rejeki, F., & Ayumi, V., "Analisa Sentimen Mengenai Kenaikan Harga BBM Menggunakan Metode Naive Bayes Dan Support Vector Machine", 6, 1-10, Januari, 2023. doi:10.36085
[12] Septiani, N., Anwar, S., & Herdiana, R., "Penerapan Algoritma K-Means Clustering Untuk Harga Rumah" , 35-47, 2023.
[13] Asminah, "Sistem Penentuan Penambahan Koleksi Buku di Perpustakaan menggunakan Metode K-Means Clustering", 4(1), 330-338, 2022.
[14] Sutikno, W., Palandi, J.F., dan Octavia, C.A., "Klasifikasi E-book Berbahasa Inggris Dengan Menggunakan Metode K-Means Clustering Studi Kasus Perpustakaan STIKI Malang", 7(1), 80-85, 2019.
[15] Cahyo, Arisa Dwi. , "Metode Naive Bayes untuk Klasifikasi Masa Studi Sarjana", 3(4). 1-19, 2023.