Comparison of Data Mining for Classifying Student Graduation Levels Using Naive Bayes, Decision Tree, and Random Forest Methods (Case Study of The Undergraduate Program at Mitra Indonesia University)

Main Article Content

Tri Destanto Handoyo Widi Nugroho

Abstract

This study aims to apply data mining techniques to classify student graduation rates in the Undergraduate Program at Mitra Indonesia University. The methods used in this study include Naive Bayes, Decision Tree, and Random Forest. The data used includes student academic data, such as grades, attendance, and other demographic information. The research steps include data collection, data cleaning, data analysis, and the application of data mining algorithms. The results of the study show that the Random Forest method provides the highest accuracy compared to Naive Bayes and Decision Tree in predicting student graduation rates. The Random Forest method achieved an accuracy of 85%, while the Decision Tree achieved 80%, and Naive Bayes achieved 75%. These findings are expected to help Mitra Indonesia University identify students at risk of not graduating on time, so appropriate interventions can be provided to improve graduation rates

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
T. Destanto and H. Nugroho, “Comparison of Data Mining for Classifying Student Graduation Levels Using Naive Bayes, Decision Tree, and Random Forest Methods (Case Study of The Undergraduate Program at Mitra Indonesia University)”, CCIT (Creative Communication and Innovative Technology) Journal, vol. 18, no. 1, pp. 59 - 66, Oct. 2024.
Section
Articles

References

1. Ikko Mulya Rizky, I., Yusuf Irianto, S., & Sriyanto, S. (2023). Perbandingan Kinerja Algoritma Naive Bayes, Support Vector Machine dan Random forest untuk Prediksi Penyakit Ginjal Kronis. Seminar Nasional Hasil Penelitian Dan Pengabdian Masyarakat , 1, 139–151. https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/3832
2. Lestari, S., & Suryadi, A. (2014). Model Klasifikasi Kinerja Dan Seleksidosen Berprestasi Dengan. Proseding Seminar Bisnis & Teknologi, 15–16.
3. Nugroho, H. W., Adji, T. B., & Setiawan, N. A. (2018). Random forest weighting based feature selection for C4.5 algorithm on wart treatment selection method. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 1858–1863. https://doi.org/10.18517/ijaseit.8.5.6504
4. Pratama, R. (2020). Peningkatan Efisiensi Pelaporan Keuangan dengan Aplikasi Berbasis Python. Jurnal Sistem Informasi, 17(1), 45–58.
5. Sadimin, H. W. N. (2023). Perbandingan Kinerja Algoritma Datamining Untuk Prediksi Kelulusan Mahasiwa. Jurnal Teknoinfo, 17, 512–520. https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/article/view/2619
6. Sriyanto, & Ria Supriyatna, A. (2023). Prediksi Penyakit Diabetes Menggunakan Algoritma Random Forest. Ijccs, 17 No. 1(x), 1–5.
7. Toro, R., & Lestari, S. (2023). Perbandingan Algoritma Data Mining Untuk Penentuan Lokasi Promosi Penerimaan Mahasiswa Baru Pada IIB Darmajaya Lampung. Techno.Com, 22(1), 223–234. https://doi.org/10.33633/tc.v22i1.7118
8. Yulianto, B. (2019). Sistem Informasi dan Aplikasinya dalam Dunia Retail. Penerbit Andi.