PENGENALAN CIRI GARIS TELAPAK TANGAN MENGGUNAKAN EKSTRAKSI FITUR (GLCM) DAN METODE K-NN

Main Article Content

Intan Purnamasari T. Sutojo

Abstract

The necessity of trustworthy self-introduction is increasing for safey system.Biometric is a development of person basic identification using human natural characteristic, in this case is palm of hand.Palmprint biometric is choosen for it has a unique characterisctic including tangled lines (wrinkles features) and are stable. The main thing of this question is “what is my identity similar with the thing that I mention or guess?”.In this analysis, the writer chooses KNN method and extract of GLCM features to solve this research.The sequences of the reseacrh begin with a sample of palmprint, then it continues by changing the image of RGB to grayscale. The output of the prepocessing is extracted by using GLCM features.The next step is classifying between trained image and tested image using K-NN method. The result of the classification is measured based on level of its accuration and comparing the accuration result by changing directed corner to GLCM and total of K in K-NN.In the research, the sample used by amount of 103 images which consist of 78 palmprint image for trained image and 26 tested image on each respondents represented by 4 samples of palmprint. Then, the output of total accuration is amount 92,3%

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
I. Purnamasari and T. Sutojo, “PENGENALAN CIRI GARIS TELAPAK TANGAN MENGGUNAKAN EKSTRAKSI FITUR (GLCM) DAN METODE K-NN”, CCIT (Creative Communication and Innovative Technology) Journal, vol. 10, no. 2, pp. 221-229, Aug. 2017.
Section
Articles

References

[1] Ketut Gede Darma Putra, Wira Bhuana, Erdiawan “Pembentukan Kode Telapak Tangan (Palm Code) Berdasarkan Metode Gabor 2D”, vol. 15 no.2, pp. 161-167,Universitas Udayana, Bali, November 2011
[2] I Ketut Gede Darma Putra,”Sistem Verifikasi Biometrika Telapak Tangan Dengan Metode Dimensi Fraktal dan Lacunarity”, Vol. 8 No 2. Universitas Udayana, Bali, 2012
[3] E. Andriyanto, Y. Melita, “Pengenalan Karakteristik Manusia Melalui Pola Telapak Tangan Menggunakan Metode Probabilistic Neural Network”, vol. 7 no.2 Agustus, Sekolah Tinggi Teknik Surabaya, 2013
[4] S.Bagus Pamungkas,F.Agustina”Jaringan Saraf Tiruan Pada Biometrika Deteksi Citra Garis Telapak Tangan Dengan Metode Backpropagation”,Tugas Akhir,Teknik Informatika Universitas Dian,Semarang,2013
[5] N. Zulpe and V. Pawar “GLCM Textural Features for Brain Tumor Classification,” vol.9 no.3, pp. 354-459, May 2012.
[6] R. Listia and A. Harjoko, “Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Co-occurence Matrix (GLCM)” vo.8, no 1 pp. 59-68, Januari 2014
[7] A. Qur’ania, A. H. Wigena and A. Kustiyo, “Analisis Tekstur Citra Anatomi Stomata Untuk Klasifikasi Freycinetia Menggunakan K-Nearest Neighbor”, vol.3, pp. 28-31, 2012.
[8] Galih Wicaksono, R. Rizal Isnanto, and A. Ajulian Zahra, “Sistem Identifikasi Garis Utama Telapak Tangan Menggunakan Metode Principal Compenent Analysis (PCA) dan Jarak Euclidean”, Universitas Diponegoro Semarang, 2012
[9] Ilham Mugni, Maman Somantri, and Rizal Isnanto, “Sistem Identifikasi Berdasarkan Ciri Garis-garis Utama Telapak Tangan Menggunakan Metode Overlapping Block”, Universitas Diponegoro, Semarang
[10] Y.G.K, Isantoso, and R.R. Isnanto, “Klasifikasi Citra Dengan Matriks Ko-Okurensi Aras Keabuan (Gray Level Co-occurence Matrix-GLCM) Pada Lima Kelas Biji-bijian”, Universitas Diponegoro, Semarang
[11] L.T. Wibowo, I. Santoso, B. Setiyono, “Klasifikasi Kelas Daging Menggunakan Pencirian Matriks Ko-okurensi Aras Keabuan”, Universitas Diponegoro, Semarang
[12] M.I. Sikki, “Pengenalan Wajah Menggunakan K-Nearest Neighbour dengan Praproses Transformasi Wavelet”, vol. X, no.2, pp.159-172, Desember 2009
[13] Toni W, “Pengenalan Wajah dengan Matriks Ko-okurensi Aras Keabuan dan Jaringan Syaraf Tiruan Probabilitas”Universitas Diponegoro, Semarang
[14] T. Sutoyo, E. Mulyanto, V. Suhartono, O.D. Nurhayati and W., Teori Pengolahan Citra Digital, ANDI, 2009