Use of Residual Network (ResNet) for Disease Classification in Potato Leaves Penggunaan Residual Network (ResNet) untuk Klasifikasi Penyakit pada Daun Kentang

Main Article Content

Ichsan Haikal David Hasiholan Nadeak Lukman Hakim

Abstract

Diseases in potato plants can have serious impacts on crop yield and overall plant health, threatening the sustainability of agricultural production. To enhance the accuracy and efficiency of potato leaf disease detection, this study proposes a new approach utilizing Residual Network architecture, a promising technique in image analysis. The dataset used is sourced from the public Kaggle repository, providing the necessary diversity to effectively train the model. The process of splitting the dataset into training and testing data is essential to optimize the performance of the Residual Network algorithm, ensuring that the model can generalize disease patterns well. The research findings highlight that Scenario 1, which adopts a training-to-testing data ratio of 90:10, emerges as the most optimal choice. In testing, this scenario demonstrated superior performance compared to other scenarios, achieving the highest accuracy rate of 76%, indicating its promising performance in classifying data with high accuracy. These results suggest significant potential for this approach in practical applications for effective and efficient potato leaf disease detection, thereby enhancing agricultural productivity and ensuring food security.

Article Details

How to Cite
Haikal, I., Nadeak, D., & Hakim, L. (2025). Use of Residual Network (ResNet) for Disease Classification in Potato Leaves. Journal Sensi: Strategic of Education in Information System, 11(1), 19-30. https://doi.org/https://doi.org/10.33050/sensi.v11i1.3763
Section
Articles

References

[1] A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creative Information Technology Journal, vol. 8, no. 1, pp. 22–31, 2021.
[2] B. P. Statistik, “Statistik Indonesia 2023,” 2023. [Online]. Available: https://www.bps.go.id/id/publication/2023/06/09/03847c5743d8b6cd3f08ab76/statistik-hortikultura-2022.html
[3] B. P. Statistik, “Statistik Hortikultura 2022,” 2023. [Online]. Available: https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html
[4] A. M. Lesmana, R. P. Fadhillah, and C. Rozikin, “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN),” Jurnal Sains Dan Informatika, vol. 8, no. 1, pp. 21–30, 2022.
[5] F. B. Setiawan and I. P. Kurnia, “Pemilah Jenis Daun Mangga Melalui Deteksi RGB Menggunakan Sistem Pengolahan Citra,” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), vol. 13, no. 2, pp. 171–182, 2023.
[6] A. R. Putri, “Pengolahan citra dengan menggunakan web cam pada kendaraan bergerak di jalan raya,” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), vol. 1, no. 01, 2016.
[7] N. R. Muntiari and K. H. Hanif, “Klasifikasi penyakit kanker payudara menggunakan perbandingan algoritma machine learning,” Jurnal Ilmu Komputer dan Teknologi, vol. 3, no. 1, pp. 1–6, 2022.
[8] M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning,” Karimah Tauhid, vol. 2, no. 1, pp. 1–6, 2023.
[9] A. Ridhovan and A. Suharso, “Penerapan metode residual network (RESNET) dalam klasifikasi penyakit pada daun gandum,” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), vol. 7, no. 1, pp. 58–65, 2022.
[10] N. Sankalana, “Potato Leaf Disease Dataset,” 2023. [Online]. Available: https://www.kaggle.com/datasets/nirmalsankalana/potato-leaf-disease-dataset/data
[11] E. Saputro and D. Rosiyadi, “Penerapan Metode Random Over-Under Sampling Pada Algoritma Klasifikasi Penentuan Penyakit Diabetes,” Bianglala Informatika, vol. 10, no. 1, pp. 42–47, 2022.
[12] B. Elia and I. D. M. B. A. Darmawan, “Klasifikasi Kesegaran Daging Sapi Menggunakan Deep Learning Arsitektur VGG16 Dengan Augmentasi Citra,” Jurnal Nasional Teknologi Informasi dan Aplikasinya, vol. 1, no. 1, 2022.
[13] J. S. P. Sibarani, S. T. Damanik, R. Nurkhalizah, S. Mulyana, and B. Nasution, “Klasifikasi Tanaman Hias Menggunakan Algoritma Convolutional Neural Network,” Journal of Information Technology Ampera, vol. 4, no. 3, pp. 286–297, 2023.
[14] A. N. A. Thohari, L. Triyono, I. Hestiningsih, B. Suyanto, and A. Yobioktobera, “Performance Evaluation of Pre-Trained Convolutional Neural Network Model for Skin Disease Classification,” JUITA: Jurnal Informatika, vol. 10, no. 1, pp. 9–18, 2022.
[15] J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf Sci (N Y), vol. 507, pp. 772–794, 2020.