Data Analysis of Thesis Guidance Students Using Random Forest, Gradient Boosting, and Naïve Bayes Algorithms (Case Study: University of Raharja) Analisis Data Mahasiswa Bimbingan Skripsi Menggunakan Algoritma Random Forest, Gradient Boosting, dan Naïve Bayes (Studi Kasus: Universitas Raharja)
Main Article Content
Abstract
Thesis guidance is a crucial stage in higher education, as the thesis is one of the primary requirements for earning a bachelor's degree. One of the main challenges in thesis guidance is managing consultation data between students and their supervisors. The application of technology and machine learning approaches offers significant potential in addressing this issue. Machine learning algorithms such as Random Forest, Gradient Boosting, and Naïve Bayes can be utilized to automatically analyze thesis guidance data, thereby assisting supervisors in efficiently monitoring student progress. This research aims not only to provide a solution for supervisors in monitoring the progress of their students but also to offer a valuable tool for university management to evaluate the performance of supervisors in providing guidance. Based on the results and comparisons conducted, it can be concluded that the Gradient Boosting method achieves the highest accuracy, reaching 100%, compared to Random Forest with an accuracy of 98.8% and Naïve Bayes with an accuracy of 97.4%. From the testing data results using the Naïve Bayes, Gradient Boosting, and Random Forest algorithms, different accuracy levels were observed. However, the prediction outcomes were consistent: out of 235 testing data, 25 data points were classified as "Not Eligible," and 210 data points were classified as "Eligible" based on the established criteria.
Article Details
References
[2] Rasdiany, A. N., & Karneli, Y.. Konseling individual menggunakan teknik WDEP untuk meningkatkan keterampilan belajar siswa. Jurnal Aplikasi IPTEK Indonesia, 5(1), 36-43. 2021.
[3] Marlia, A., Fadhilah, N. A., Pertiwi, M., Yusuf, M. H., Wulandari, N. S., Sari, S. M., & Ani, S.. Peran Bimbingan Konseling Dan Pendidikan Agama Islam (PAI): Penerapan Dan Solusi Di MAN 2 Palembang. SIGNIFICANT: Journal Of Research And Multidisciplinary, 2(02), 218-229. 2023.
[4] Putri, V. A., Sotyawardani, K. C. A., & Rafael, R. A.. Peran artificial intelligence dalam proses pembelajaran mahasiswa di Universitas Negeri Surabaya. In Prosiding Seminar Nasional Ilmu Ilmu Sosial (SNIIS) (Vol. 2, pp. 615-630). October, 2023.
[5] Ramadhani, A., & Sembiring, M. A,. Sistem Kendali Berbasis Machine Learning Menggunkan Model Neive Bayes Pada Pengeringan Padi Otomatis. JOURNAL OF SCIENCE AND SOCIAL RESEARCH, 5(3), 690-696. 2022.
[6] Sidik, A. D., & Ansawarman, A. Prediksi jumlah kendaraan bermotor menggunakan machine learning. Formosa Journal of Multidisciplinary Research, 1(3), 559-568. 2022.
[7] Arisusanto, A., Suarna, N., & Dwilestari, G.. Analisa Klasifikasi Data Harga Handphone Menggunakan Algoritma Random Forest Dengan Optimize Parameter Grid. Jurnal Teknologi Ilmu Komputer, 1(2), 43-47. 2023.
[8] Supriyadi, R., Gata, W., Maulidah, N., & Fauzi, A. Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah. E-Bisnis: Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 67-75. 2020.
[9] Pradana, R. Y., Nastiti, F. E., & Oktaviani, I.. Machine Learning Pengklasifikasikan Performa Karyawan Direct Sales Force Kartu Prabayar Menggunakan Metode Random Forest Classifier. JEKIN-Jurnal Teknik Informatika, 4(3), 590-599. 2024.
[10] Baliani, M. D. I., Huizen, R. R., & Pradipta, G. A,. Perbandingan Performa Data Penyakit Jantung Menggunakan Pendekatan Klasifikasi Boosting Methods. In Seminar Hasil Penelitian Informatika dan Komputer (SPINTER)| Institut Teknologi dan Bisnis STIKOM Bali (pp. 894-899). June, 2024.
[11] Suryana, S. E., Warsito, B., & Suparti, S. Penerapan Gradient Boosting Dengan Hyperopt Untuk Memprediksi Keberhasilan Telemarketing Bank. Jurnal Gaussian, 10(4), 617-623. 2021.
[12] Wardhana, I., Ariawijaya, M., Isnaini, V. A., & Wirman, R. P,. Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 92-99. 2022.
[13] Raza, M. N,. Sistem Deteksi Berita Hoax Menggunakan Algoritma Naive Bayes Dan Random Forest Pada Machine Learning. Pondasi: Journal of Applied Science Engineering, 1(2), 43-57. 2024.
[14] Devi, R. F,. Analisis Sentimen Terhadap Kinerja Pelayanan Di PT Bank Rakyat Indonesia (Persindo) TBK. Menggunakan Metode Support Vector Machine, Naive Bayes, Dan K-Nearest Neighbors. 2023.
[15] Watratan, A. F., & Moeis, D. Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology, 1(1), 7-14. 2020.